
Badeed Saleh

Zach Santangelo

Professor Feng, Lui

March 2022

Undecoder

Unblurring text by estimation

Abstract

Licenses, faces, passwords, and other sensitive information captured on camera

or screenshots can be blurred before being published to “protect” individuals, but this

obscured information can still fall into the hands of bad actors. This project seeks to

quickly identify the top likeliest set of characters provided to it as a string of text by

obfuscating then deobfuscating in various text offsets as a brute force tactic that can be

surprisingly effective at finding a likely match by minimizing the error function

(difference between the image guess and blurred input) and retrieving information from

the pixels available. Some depth in the recursion were discovered by the program

before moving on to a different offset due to letters further down being cropped with

some error..

Introduction

Undecoder’s goal is to compute the lowest error guess of the provided text as

quickly as possible using Python’s numpy library and openCV by tackling the hurdles

discussed in the article by Dan Petro “Never, Ever, Ever Use Pixelation for Redacting

Text” in python into an extensible and modular set of components. It is vital to become

aware that simply blurring information cannot completely secure one’s privacy, and that

enough information could be intact for a computer to estimate low difference character

sequences for blurred images. Approaches published today often include some deep

learning aspect, such as the 2018 paper by Fatma et al. implementing a “Super

Resolution Convolutional Neural Network” that enhances the quality of a given

https://bishopfox.com/authors/dan-petro


image[2]. Improving the resolution and reversing intentional obfuscation of text

information has many implications on security of the uninformed who blur text

intending to render it devoid of relevant data. Methods to extract information from any

source is of interest to many entities for various reasons. The most secure way to

remove the information of sensitive text is by completely replacing it with solid color

(black or white).

Method

Initial relevant variables to consider that are held constant are the differences

between individual programs rendering the “same” text with the same font and size.

This attempt is rendered in Google Chrome with a standardized html layout for the

input message. Guesses made by the program were evaluated for their difference from

the input image to reduce the error function (difference between the input text being

blurred and compared to provided blurred text).

The decode function catches the error of the guess compared to the input text

and the offsets associated with the character string guessed and built based on the

error array. Below, one can still faintly make out some of the letters with some offsets,

indicating there is enough information that some letters may be computationally

extracted by comparing a guess image using a similar enough font, renderer, offset,

size, pixelation function,

Figure 1. Example blurred text via convolution of

the pixel values and setting them to the

average of the blockSize standard.

Estimating the difference between two images to obtain the error of the guess

required rescaling of the image dimensions to fit one another, which also requires

adjusting the indicators placed for the proper width of the image of obfuscated text.



Empirically, this took adjusting through some observation of the size of the text locked

in for this trial. Estimations of text sampling comparisons requires sampling for

generated colored indicators placed at the end of the input text rendering to allow the

right most of the image to be aligned and rendered properly, which can also introduce

error in the last block and can require correction if there is a remainder of the image

width to blockSize.

In further trials, the font, size, and renderer of the text (chrome, firefox, etc),

could be searched through with later installations to further automate the process.

Additionally, different pixelation functions with hyperparameters could be incrementally

compared and hashed into a database for an optimized system designed for cracking

various screen text via the error estimation system.

Experiments

Shuffled strings of the alphabet and space character

“abcdefghijklmnopqrstuvwxyz ” were chosen to test how the solution of comparing

blurred letters column by column handled against the challenges of whitespace, variable

width, and varying offsets. This did prove slow, as was abandoned quickly to shorter

strings during debugging, such as this blurred sample of the string “zach code”, which

was temporarily used as a standard for the images loaded in later to be scaled to a

fixed blockSize (8 in our trials).

Undecoder found some low error guess on trials and followed into a two

character deep guess for the string “badeedq” for which it found a low error for “b” at a

given offset and then attempted “ba” before moving on to another offset as it would

have if “b” with the guessed offset was a poor match. Challenges were faced primarily

at the empirical difficulties of properly cropping the rendered images to provide reliable



comparisons and results after scaling to allow comparison of the guess with the current

text string guess being checked each iteration.

A threshold for the whitespace guesses that is more lenient to the effects of

bleed over by other characters to count as a “low” error allowed better detection of

white spaces in the provided blurred text image to decode. The larger hurdle was

obtaining the proper difference threshold functions empirically for our model with the

given tools and properly cropping for comparing. The program matched some inputs

that appear close to the initial kernel for the recursive guess function, indicating some

promise to the approach with further improvements.



Sources

[1] Dan Petro, Never, Ever, Ever Use Pixelation for Redacting Text

https://bishopfox.com/blog/unredacter-tool-never-pixelation

[2] Albluwi, Fatma & Krylov, Vladimir A. & Dahyot, Rozenn. (2018). Image Deblurring

and Super-Resolution Using Deep Convolutional Neural Networks. 1-6.

10.1109/MLSP.2018.8516983.

https://www.researchgate.net/publication/328985265_Image_Deblurring_and_Super-Re

solution_Using_Deep_Convolutional_Neural_Networks#fullTextFileContent

https://bishopfox.com/blog/unredacter-tool-never-pixelation
https://www.researchgate.net/publication/328985265_Image_Deblurring_and_Super-Resolution_Using_Deep_Convolutional_Neural_Networks#fullTextFileContent
https://www.researchgate.net/publication/328985265_Image_Deblurring_and_Super-Resolution_Using_Deep_Convolutional_Neural_Networks#fullTextFileContent

